ABI5 interacts with abscisic acid signaling effectors in rice protoplasts.
نویسندگان
چکیده
Abscisic acid (ABA) regulates seed maturation, germination, and adaptation of vegetative tissues to environmental stresses. The mechanisms of ABA action and the specificity conferred by signaling components in overlapping pathways are not completely understood. The ABI5 gene (ABA insensitive 5) of Arabidopsis encodes a basic leucine zipper factor required for ABA response in the seed and vegetative tissues. Using transient gene expression in rice protoplasts, we provide evidence for the functional interactions of ABI5 with ABA signaling effectors VP1 (viviparous 1) and ABI1 (ABA insensitive 1). Co-transformation experiments with ABI5 cDNA constructs resulted in specific transactivation of the ABA-inducible wheat Em, Arabidopsis AtEm6, bean beta-Phaseolin, and barley HVA1 and HVA22 promoters. Furthermore, ABI5 interacted synergistically with ABA and co-expressed VP1, indicating that ABI5 is involved in ABA-regulated transcription mediated by VP1. ABI5-mediated transactivation was inhibited by overexpression of abi1-1, the dominant-negative allele of the protein phosphatase ABI1, and by 1-butanol, a competitive inhibitor of phospholipase D involved in ABA signaling. Lanthanum, a trivalent ion that acts as an agonist of ABA signaling, potentiated ABI5 transactivation. These results demonstrate that ABI5 is a key target of a conserved ABA signaling pathway in plants.
منابع مشابه
Sumoylation of ABI5 by the Arabidopsis SUMO E3 ligase SIZ1 negatively regulates abscisic acid signaling.
SUMO (small ubiquitin-related modifier) conjugation (i.e., sumoylation) to protein substrates is a reversible posttranslational modification that regulates signaling by modulating transcription factor activity. This paper presents evidence that the SUMO E3 ligase SIZ1 negatively regulates abscisic acid (ABA) signaling, which is dependent on the bZIP transcripton factor ABI5. Loss-of-function T-...
متن کاملBRASSINOSTEROID INSENSITIVE2 Interacts with ABSCISIC ACID INSENSITIVE5 to Mediate the Antagonism of Brassinosteroids to Abscisic Acid during Seed Germination in ArabidopsisW
Seed germination and postgerminative growth are regulated by a delicate hormonal balance. Abscisic acid (ABA) represses Arabidopsis thaliana seed germination and postgerminative growth, while brassinosteroids (BRs) antagonize ABA-mediated inhibition and promote these processes. However, the molecular mechanism underlying BR-repressed ABA signaling remains largely unknown. Here, we show that the...
متن کاملFunctional interactions of lanthanum and phospholipase D with the abscisic acid signaling effectors VP1 and ABI1-1 in rice protoplasts.
cis,trans-Abscisic acid (ABA) plays an important role in plant growth and development, regulation of seed maturation, germination, and adaptation to environmental stresses. Knowledge of ABA mechanisms of action and the interactions of components required for ABA signal transduction is far from complete. Using transient gene expression in rice protoplasts, we observed additive and inhibitory eff...
متن کاملBRASSINOSTEROID INSENSITIVE2 interacts with ABSCISIC ACID INSENSITIVE5 to mediate the antagonism of brassinosteroids to abscisic acid during seed germination in Arabidopsis.
Seed germination and postgerminative growth are regulated by a delicate hormonal balance. Abscisic acid (ABA) represses Arabidopsis thaliana seed germination and postgerminative growth, while brassinosteroids (BRs) antagonize ABA-mediated inhibition and promote these processes. However, the molecular mechanism underlying BR-repressed ABA signaling remains largely unknown. Here, we show that the...
متن کاملABD1 is an Arabidopsis DCAF substrate receptor for CUL4-DDB1-based E3 ligases that acts as a negative regulator of abscisic acid signaling.
Members of the DDB1-CUL4-associated factors (DCAFs) family directly bind to DAMAGED DNA BINDING PROTEIN1 (DDB1) and function as the substrate receptors in CULLIN4-based E3 (CUL4) ubiquitin ligases, which regulate the selective ubiquitination of proteins. Here, we describe a DCAF protein, ABD1 (for ABA-hypersensitive DCAF1), that negatively regulates abscisic acid (ABA) signaling in Arabidopsis ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 277 3 شماره
صفحات -
تاریخ انتشار 2002